数的产生及发展过程:
数──自然科学之父,起源于原始人类用来数数计数的记号形成自然数“数”的符号,是人类最伟大发明。
大约在5000年以前,埃及的祭司已在一种用芦苇制成的草纸上书写数的符号,而美索不达米亚的祭司则是写在松软的泥板上。
他们除了仍用单划表示“-”以外,还用其它符号表示“+”或者更大的自然数;他们重复地使用这些单划和符号,以表示所需要的数字。
公元前1500年,南美洲秘鲁印加族(印第安人的一部分)习惯于“结绳记数”──每收进一捆庄稼,就在绳子上打个结,用结的多少来记录收成。
“结”与痕有一样的作用,也是用来表示自然数的。根据我国古书《易经》的记载,上古时期的中国人也是“结绳而治”,就是用在绳上打结的办法来记事表数。
后来又改为“书契”,即用刀在竹片或木头上刻痕记数.用一划代表“一”。直到今天,我们中国人还常用“正”字来记数.每一划代表“一”。
数学发展史:
数学的发展史大致可以分为四个时期。
第一时期:数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。
第二时期:初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成中学数学的主要内容。
这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、几何、代数。
第三时期:变量数学时期。变量数学产生于17世纪,大体上经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus),即高等数学中研究函数的微分。
积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学、方程及其应用。微分学包括求导数的运算,是一套关于变化率的理论。
它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
第四时期:现代数学。现代数学时期,大致从19世纪初开始。数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。
数学的来源手抄报
相传,在非常遥远的古代,有一天,从黄河中忽然跳出一匹“龙马”,马背上驮着一幅图,图上画着许多神秘的数学符号;后来,从奔腾的洛水中又爬出一只“神龟”来,龟背上驮着一卷书,书中写的是数的排列方法。
出现了“河图洛书”之后,数学也就诞生了。
小朋友,这个神奇的传说有趣吗?不过,它只是个传说而已。
那么,数学是怎样产生的呢?远古时代人类以打猎、采野果为生。在狩猎中,他们发现只有人比兽多,才有可能对付那些猛兽;采果时,他们发现只有当野果堆得老高时,才有可能帮助他们度过漫长的冬天,这样的实践中,他们才逐步领悟了“多”与“少”的概念。
分配食物时,由于人们通常用一只手拿一件物品,这样就把“一”从“多”的概念中分离出来。有了“一”,人们又逐渐形成了“二”的概念,这可能是因为人的双手各拿一件物品吧!那怎样表示“三”呢?人们并没有三只手呀!后来人们用“巧妙”的办法:把第三件物品放在自己的脚边,这样问题不就解决了!
从一些出土的'原始社会的文物中也可以看到一些与数目有关的内容,如陶器上有两只耳朵,三只脚等。
形成“一”、“二”、“三”这些数的概念经历了很长的时间。但那时人类还没有表示数的名称,他们表示数时,是靠手势和相应的身体动作。
;本文来自作者[admin]投稿,不代表迪紫号立场,如若转载,请注明出处:https://kpedzd.cn/dizi/471.html
评论列表(3条)
我是迪紫号的签约作者“admin”
本文概览:数的产生及发展过程:数──自然科学之父,起源于原始人类用来数数计数的记号形成自然数“数”的符号,是人类最伟大发明。大约在5000年以前,埃及的祭司已在一种用芦苇制成的草纸上书写...
文章不错《数的发展史手抄报》内容很有帮助