数学历史故事?

欧几里德(eucild)生于雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。

古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学著作,但都是讨论某一方面的问题,内容不够系统。欧几里德汇集了前人的成果,采用前所未有的独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨著。

《原本》问世后,它的手抄本流传了1800多年。1482年印刷发行以后,重版了大约一千版次,还被译为世界各主要语种。13世纪时曾传入中国,不久就失传了,1607年重新翻译了前六卷,1857年又翻译了后九卷。

欧几里德善于用简单的方法解决复杂的问题。他在人的身影与高正好相等的时刻,测量了金字塔影的长度,解决了当时无人能解的金字塔高度的大难题。他说:“此时塔影的长度就是金字塔的高度。”

欧几里德是位温良敦厚的教育家。欧几里得也是一位治学严谨的学者,他反对在做学问时投机取巧和追求名利,反对投机取巧、急功近利的作风。尽管欧几里德简化了他的几何学,国王(托勒密王)还是不理解,希望找一条学习几何的捷径。欧几里德说:“在几何学里,大家只能走一条路,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。一次,他的一个学生问他,学会几何学有什么好处?他幽默地对仆人说:“给他三个钱币,因为他想从学习中获取实利。”

欧氏还有《已知数》《图形的分割》等著作。

华罗庚

华罗庚,数学家,中国科学院院士。 1910年11月12日生于江苏金坛,1985年6月12日卒于日本东京。

1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副主席。曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等领域的研究与教授工作并取得突出成就。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。

在代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。其专著 《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多篇,并有专著和科普性著作数十种。

爱奥尼亚最繁盛的城市是米利都(Miletus,小亚细亚西南角海岸).地居东西方交通的要冲,也是古希腊第一个享誉世界声誉的学者泰勒斯(Thales 约公元前640-546年)的故乡.泰勒斯早年是一个商人,以后游历了巴比伦,埃及等地,很快学会了天文和几何知识.

自然科学发展的早期,还没有从哲学分离出来.所以每一个数学家都是哲学家,就像我国每一个数学家都是历法家一样.要了解人与自然的关系,以及人在宇宙中所处的位置,首先要研究数学,因为数学可以帮助人们在混沌中找出秩序,按照逻辑推理求得规律.

泰勒斯是公认的希腊哲学家的鼻祖.他创立了爱奥尼亚哲学学派,摆脱了宗教,从自然现象中寻找真理,否认神是世界的主宰.他认为处处有生命和运动,并以水为万物的根源.泰勒斯有崇高的声望,被尊为希腊七贤之首.

泰勒斯在数学方面的划时代的贡献是开始了命题的证明.他所得到的命题是很简单的.如圆被任一直径平分;等腰三角形两底角相等;两条直线相交,对顶角相等;相似三角形对应边成比例;半圆上的圆周角是直角;两三角形两角与一边对应相等,则三角形全等.并且证明了这些命题.

泰勒斯游历了许多地方,他在埃及的时候,应用相似三角形原理,测出了金字塔的高度,使埃及法老阿美西斯(Amasis 二十六王朝法老)大为惊讶.泰勒斯对于天文也很精通,据说在他的故乡附近曾经存在过两个国家:美地亚国(Media)和吕地亚国(Lydia).有一年发生了激烈的战争.连续五年未见胜负,横尸遍野,哀声载道.泰勒斯预先知道有日食要发生,便扬言上天反对战争,某月某日将大怒,太阳将被消逝.到了那一天,两军正在酣战不停,突然太阳失去了光辉,百鸟归巢,明星闪烁,白昼顿成黑夜.双方士兵将领大为恐惧,于是停战和好,后来两国还互通婚姻.据考证,这次日食发生在公元前585年5月28日.这大概是应用了迦勒底人发现的沙罗周期,根据公元前603年5月18日的日食推得的.

泰勒斯被誉为古希腊数学,天文,哲学之父,是当之无愧的.

斐波那契(Leonardo Fibonacci,约1170-约1250)

意大利数学家,12、13世纪欧洲数学界的代表人物。生于比萨,早年跟随经商的父亲到北非的布日伊(今阿尔及利亚东部的小港口贝贾亚),在那里受教育。以后到埃及、叙利亚、希腊、西西里、法国等地游历,熟习了不同国度在商业上的算术体系。1200年左右回到比萨,潜心写作。

他的书保存下来的共有5种。最重要的是《算盘书》(1202年完成,1228年修订),算盘并不单指罗马算盘或沙盘,实际是指一般的计算。

其中最耐人寻味的是,这本书出现了中国《孙子算经》中的不定方程解法。题目是一个不超过105的数分别被 3、5、7除,余数是2、3、4,求这个数。解法和《孙子算经》一样。另一个「兔子问题」也引起了后人的极大兴趣 。题目假定一对大兔子每一个月可以生一对小兔子,而小兔子出生后两个月就有生殖能力,问从一对大兔子开始, 一年后能繁殖成多少对兔子?这导致「斐波那契数列」:1,1,2,3,5,8,13,21,…,其规律是每一项(从第3项起)都是前两项的和。这数列与后来的「优选法」有密切关系。

拉格朗日〔Lagrange, Joseph Louis,1736-1813〕

法国数学家。

涉猎力学,着有分析力学。

百年以来数学界仍受其理论影响。

法国数学家、力学家及天文学家拉格朗日于1736年1月25日在意大利西北部的都灵出生。少年时读了哈雷介绍牛顿有关微积分之短文,因而对分析学产生兴趣。他亦常与欧拉有书信往来,于探讨数学难题「等周问题」的过程中,当时只有18岁的他就以纯分析的方法发展了欧拉所开创的变分法, 奠定变分法之理论基础。后入都灵大学。 1755年,19岁的他就已当上都灵皇家炮兵学校的数学教授。不久便成为柏林科学院通讯院院士。两年后,他参与创立都灵科学协会的工作,并于协会出版的科技会刊上发表大量有关变分法、概率论 、微分方程、弦振动及最小作用原理等论文。这些着作使他成为当时欧洲公认的第一流数学家。

到了1764年,他凭万有引力解释月球天平动问题获得法国巴黎科学院奖金。1766年,又因成功地以微分方程理论和近似解法研究科学院所提出的一个复杂的六体问题〔木星的四个卫星的运动问题〕而再度获奖。 同年,德国普鲁士王腓特烈邀请他到柏林科学院工作时说:「欧洲最大的王」的宫廷内应有「欧洲最大的数学家」,于是他应邀到柏林科学院工作,并在那里居住达20年。其间他写了继牛顿后又一重要经典力学着作《分析力学》〔1788〕。书内以变分原理及分析的方法,把完整和谐的力学体系建立起来,使力学分析化。他于序言中更宣称:力学已成分析的一个分支。

1786年普鲁士王腓特烈逝世后,他应法王路易十六之邀,于1787年定居巴黎。其间出任法国米制委员会主任,并先后于巴黎高等师范学院及巴黎综合工科学校任数学教授。最后于1813年4月10日在当地逝世。

拉格朗日不但于方程论方面贡献重大,而且还推动了代数学的发展。他在生前提交给柏林科学院的两篇着名论文:《关于解数值方程》〔1767〕及《关于方程的代数解法的研究》〔1771〕中,考察了 二、三及四次方程的一种普遍性解法,即把方程化作低一次的方程〔辅助方程或预解式〕以求解。 但这并不适用于五次方程。在他有关方程求解条件的研究中早已蕴含了群论思想的萌芽,这使他成为伽罗瓦建立群论之先导。

另外,他在数论方面亦是表现超卓。费马所提出的许多问题都被他一一解答,如:一正整数是不多于四个平方数之和的问题;求方程x2 - A y 2 = 1〔A为一非平方数〕的全部整数解的问题等。他还证明了π的无理性。这些研究成果都丰富了数论之内容。

此外,他还写了两部分析巨着《解析函数论》〔1797〕及《函数计算讲义》〔1801〕,总结了那一时期自己一系列的研究工作。 于《解析函数论》及他收入此书的一篇论文〔1772〕中企图把微分运算归结为代数运算,从而拼弃自牛顿以来一直令人困惑的无穷小量,为微积分奠定理论基础方面作出独特之尝试。他又把函数f(x) 的导数定义成f(x + h)的泰勒展开式中的h项的系数,并由此为出发点建立全部分析学。可是他并未考虑到无穷级数的收敛性问题,他自以为摆脱了极限概念,实只回避了极限概念,因此并未达到使微积分代数化、严密化的想法。不过,他采用新的微分符号,以幂级数表示函数的处理手法对分析学的发展产生了影响,成为实变函数论的起点。 而且,他还在微分方程理论中作出奇解为积分曲线族的包络的几何解释,提出线性变换的特征值概念等。

数学界近百多年来的许多成就都可直接或简接地追溯于拉格朗日的工作。为此他于数学史上被认为是对分析数学的发展产生全面影响的数学家之一。

拉格朗日〔Lagrange, Joseph Louis,1736-1813〕

法国数学家。

涉猎力学,着有分析力学。

百年以来数学界仍受其理论影响。

法国数学家、力学家及天文学家拉格朗日于1736年1月25日在意大利西北部的都灵出生。少年时读了哈雷介绍牛顿有关微积分之短文,因而对分析学产生兴趣。他亦常与欧拉有书信往来,于探讨数学难题「等周问题」的过程中,当时只有18岁的他就以纯分析的方法发展了欧拉所开创的变分法, 奠定变分法之理论基础。后入都灵大学。 1755年,19岁的他就已当上都灵皇家炮兵学校的数学教授。不久便成为柏林科学院通讯院院士。两年后,他参与创立都灵科学协会的工作,并于协会出版的科技会刊上发表大量有关变分法、概率论 、微分方程、弦振动及最小作用原理等论文。这些着作使他成为当时欧洲公认的第一流数学家。

到了1764年,他凭万有引力解释月球天平动问题获得法国巴黎科学院奖金。1766年,又因成功地以微分方程理论和近似解法研究科学院所提出的一个复杂的六体问题〔木星的四个卫星的运动问题〕而再度获奖。 同年,德国普鲁士王腓特烈邀请他到柏林科学院工作时说:「欧洲最大的王」的宫廷内应有「欧洲最大的数学家」,于是他应邀到柏林科学院工作,并在那里居住达20年。其间他写了继牛顿后又一重要经典力学着作《分析力学》〔1788〕。书内以变分原理及分析的方法,把完整和谐的力学体系建立起来,使力学分析化。他于序言中更宣称:力学已成分析的一个分支。

1786年普鲁士王腓特烈逝世后,他应法王路易十六之邀,于1787年定居巴黎。其间出任法国米制委员会主任,并先后于巴黎高等师范学院及巴黎综合工科学校任数学教授。最后于1813年4月10日在当地逝世。

拉格朗日不但于方程论方面贡献重大,而且还推动了代数学的发展。他在生前提交给柏林科学院的两篇着名论文:《关于解数值方程》〔1767〕及《关于方程的代数解法的研究》〔1771〕中,考察了 二、三及四次方程的一种普遍性解法,即把方程化作低一次的方程〔辅助方程或预解式〕以求解。 但这并不适用于五次方程。在他有关方程求解条件的研究中早已蕴含了群论思想的萌芽,这使他成为伽罗瓦建立群论之先导。

另外,他在数论方面亦是表现超卓。费马所提出的许多问题都被他一一解答,如:一正整数是不多于四个平方数之和的问题;求方程x2 - A y 2 = 1〔A为一非平方数〕的全部整数解的问题等。他还证明了π的无理性。这些研究成果都丰富了数论之内容。

此外,他还写了两部分析巨着《解析函数论》〔1797〕及《函数计算讲义》〔1801〕,总结了那一时期自己一系列的研究工作。 于《解析函数论》及他收入此书的一篇论文〔1772〕中企图把微分运算归结为代数运算,从而拼弃自牛顿以来一直令人困惑的无穷小量,为微积分奠定理论基础方面作出独特之尝试。他又把函数f(x) 的导数定义成f(x + h)的泰勒展开式中的h项的系数,并由此为出发点建立全部分析学。可是他并未考虑到无穷级数的收敛性问题,他自以为摆脱了极限概念,实只回避了极限概念,因此并未达到使微积分代数化、严密化的想法。不过,他采用新的微分符号,以幂级数表示函数的处理手法对分析学的发展产生了影响,成为实变函数论的起点。 而且,他还在微分方程理论中作出奇解为积分曲线族的包络的几何解释,提出线性变换的特征值概念等。

数学界近百多年来的许多成就都可直接或简接地追溯于拉格朗日的工作。为此他于数学史上被认为是对分析数学的发展产生全面影响的数学家之一。

黄金分割历史故事

数学奇才、计算机之父——冯·诺依曼20世纪即将过去,21世纪就要到来.我们站在世纪之交的大门槛,回顾20世纪科学技术的辉煌发展时,不能不提及20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".约翰·冯·诺依曼(JohnVonNouma,1903-1957),美藉匈牙利人,1903年12月28日生于匈牙利的布达佩斯,父亲是一个银行家,家境富裕,十分注意对孩子的教育.冯·诺依曼从小聪颖过人,兴趣广泛,读书过目不忘.据说他6岁时就能用古希腊语同父亲闲谈,一生掌握了七种语言.最擅德语,可在他用德语思考种种设想时,又能以阅读的速度译成英语.他对读过的书籍和论文.能很快一句不差地将内容复述出来,而且若干年之后,仍可如此.1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.1921年一1923年在苏黎世大学学习.很快又在1926年以优异的成绩获得了布达佩斯大学数学博士学位,此时冯·诺依曼年仅22岁.1927年一1929年冯·诺依曼相继在柏林大学和汉堡大学担任数学讲师。1930年接受了普林斯顿大学客座教授的职位,西渡美国.1931年成为该校终身教授.1933年转到该校的高级研究所,成为最初六位教授之一,并在那里工作了一生.冯·诺依曼是普林斯顿大学、宾夕法尼亚大学、哈佛大学、伊斯坦堡大学、马里兰大学、哥伦比亚大学和慕尼黑高等技术学院等校的荣誉博士.他是美国国家科学院、秘鲁国立自然科学院和意大利国立林且学院等院的院土.1954年他任美国原子能委员会委员;1951年至1953年任美国数学会主席.1954年夏,冯·诺依曼被使现患有癌症,1957年2月8日,在华盛顿去世,终年54岁.冯·诺依曼在数学的诸多领域都进行了开创性工作,并作出了重大贡献.在第二次世界大战前,他主要从事算子理论、鼻子理论、集合论等方面的研究.1923年关于集合论中超限序数的论文,显示了冯·诺依曼处理集合论问题所特有的方式和风格.他把集会论加以公理化,他的公理化体系奠定了公理集合论的基础.他从公理出发,用代数方法导出了集合论中许多重要概念、基本运算、重要定理等.特别在1925年的一篇论文中,冯·诺依曼就指出了任何一种公理化系统中都存在着无法判定的命题.1933年,冯·诺依曼解决了希尔伯特第5问题,即证明了局部欧几里得紧群是李群.1934年他又把紧群理论与波尔的殆周期函数理论统一起来.他还对一般拓扑群的结构有深刻的认识,弄清了它的代数结构和拓扑结构与实数是一致的.他对其子代数进行了开创性工作,并莫定了它的理论基础,从而建立了算子代数这门新的数学分支.这个分支在当代的有关数学文献中均称为冯·诺依曼代数.这是有限维空间中矩阵代数的自然推广.冯·诺依曼还创立了博奕论这一现代数学的又一重要分支.1944年发表了奠基性的重要论文《博奕论与经济行为》.论文中包含博奕论的纯粹数学形式的阐述以及对于实际博奕应用的详细说明.文中还包含了诸如统计理论等教学思想.冯·诺依曼在格论、连续几何、理论物理、动力学、连续介质力学、气象计算、原子能和经济学等领域都作过重要的工作.冯·诺依曼对人类的最大贡献是对计算机科学、计算机技术和数值分析的开拓性工作.现在一般认为ENIAC机是世界第一台电子计算机,它是由美国科学家研制的,于1946年2月14日在费城开始运行.其实由汤米、费劳尔斯等英国科学家研制的"科洛萨斯"计算机比ENIAC机问世早两年多,于1944年1月10日在布莱奇利园区开始运行.ENIAC机证明电子真空技术可以大大地提高计算技术,不过,ENIAC机本身存在两大缺点:(1)没有存储器;(2)它用布线接板进行控制,甚至要搭接见天,计算速度也就被这一工作抵消了.ENIAC机研制组的莫克利和埃克特显然是感到了这一点,他们也想尽快着手研制另一台计算机,以便改进.冯·诺依曼由ENIAC机研制组的戈尔德斯廷中尉介绍参加ENIAC机研制小组后,便带领这批富有创新精神的年轻科技人员,向着更高的目标进军.1945年,他们在共同讨论的基础上,发表了一个全新的"存储程序通用电子计算机方案"--EDVAC(ElectronicDiscreteVariableAutomaticCompUter的缩写).在这过程中,冯·诺依曼显示出他雄厚的数理基础知识,充分发挥了他的顾问作用及探索问题和综合分析的能力.EDVAC方案明确奠定了新机器由五个部分组成,包括:运算器、逻辑控制装置、存储器、输入和输出设备,并描述了这五部分的职能和相互关系.EDVAC机还有两个非常重大的改进,即:(1)采用了二进制,不但数据采用二进制,指令也采用二进制;(2建立了存储程序,指令和数据便可一起放在存储器里,并作同样处理.简化了计算机的结构,大大提高了计算机的速度.1946年7,8月间,冯·诺依曼和戈尔德斯廷、勃克斯在EDVAC方案的基础上,为普林斯顿大学高级研究所研制IAS计算机时,又提出了一个更加完善的设计报告《电子计算机逻辑设计初探》.以上两份既有理论又有具体设计的文件,首次在全世界掀起了一股"计算机热",它们的综合设计思想,便是著名的"冯·诺依曼机",其中心就是有存储程序原则--指令和数据一起存储.这个概念被誉为'计算机发展史上的一个里程碑".它标志着电子计算机时代的真正开始,指导着以后的计算机设计.自然一切事物总是在发展着的,随着科学技术的进步,今天人们又认识到"冯·诺依曼机"的不足,它妨碍着计算机速度的进一步提高,而提出了"非冯·诺依曼机"的设想.冯·诺依曼还积极参与了推广应用计算机的工作,对如何编制程序及搞数值计算都作出了杰出的贡献.冯·诺依曼于1937年获美国数学会的波策奖;1947年获美国总统的功勋奖章、美国海军优秀公民服务奖;1956年获美国总统的自由奖章和爱因斯坦纪念奖以及费米奖.冯·诺依曼逝世后,未完成的手稿于1958年以《计算机与人脑》为名出版.他的主要著作收集在六卷《冯·诺依曼全集》中,1961年出版.数学奇才——伽罗华页首1832年5月30日晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点钟,他就离开了人世。数学史上最年轻、最有创造性的头脑停止了思考。人们说,他的死使数学发展推迟了好几十年。这个青年就是死时不满21岁的伽罗华。伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。1828年,17岁的伽罗华开始研究方程论,创造了“置换群”的概念和方法,解决了几百年来使人头痛的方程来解决问题。伽罗华最重要的成就,是提出了“群”的概念,用群论改变了整个数学的面貌。1829年5月,伽罗华把他的成果写成论文,递交法国科学院,但伴随着这篇杰作而来的是一连串的打击和不幸。先是父亲因不堪忍受教士诽谤而自杀,接着因他的答辩既简捷又深奥令考官们不满而未能进入著名的巴黎综合技术学校。至于他的论文,先是被认为新概念太多又过于简略而要求重写;第二份推导详尽的稿子又因审稿人病逝而下落不明;1831年1月提交的第三份论文又因评阅人不能全部看懂而被否定。青年伽罗华一方面追求数学的真知,另一方面又献身于追求社会正义的事业。在1831年法国的“七月革命”中,作为高等师范学校新生,伽罗华率领群众走上街头,抗议国王的专制统治,不幸被捕。在狱中,他染上了霍乱。即使在这样的恶劣条件下,伽罗华仍然继续搞他的数学研究,并且写成了论文,准备出狱后发表。出狱不久,因为卷入一场无聊的“爱情”纠葛而决斗身亡。伽罗华去世后16年,他留存下来的60页手稿才得以发表,科学界才传遍了他的名字。“数学之神”——阿基米德阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:<π<,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的。在这部著作中,他还提出了著名的"阿基米德公理"。《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。数学家的故事——祖冲之祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".数学家的故事——苏步青苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”这就是老一辈数学家那颗爱国的赤子之心数学之父——塞乐斯塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。塞乐斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等。也有人说,塞乐斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的。如果是这样的话,就要用到三角形对应边成比例这个数学定理。塞乐斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案。在塞乐斯以前,人们在认识大自然时,只满足于对各类事物提出怎么样的解释,而塞乐斯的伟大之处,在于他不仅能作出怎么样的解释,而且还加上了为什么的科学问号。古代东方人民积累的数学知识,王要是一些由经验中总结出来的计算公式。塞乐斯认为,这样得到的计算公式,用在某个问题里可能是正确的,用在另一个问题里就不一定正确了,只有从理论上证明它们是普遍正确的以后,才能广泛地运用它们去解决实际问题。在人类文化发展的初期,塞乐斯自觉地提出这样的观点,是难能可贵的。它赋予数学以特殊的科学意义,是数学发展史上一个巨大的飞跃。所以塞乐斯素有数学之父的尊称,原因就在这里。塞乐斯最先证明了如下的定理:1.圆被任一直径二等分。2.等腰三角形的两底角相等。3.两条直线相交,对顶角相等。4.半圆的内接三角形,一定是直角三角形。5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等。这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理。相传塞乐斯证明这个定理后非常高兴,宰了一头公牛供奉神灵。后来,他还用这个定理算出了海上的船与陆地的距离。塞乐斯对古希腊的哲学和天文学,也作出过开拓性的贡献。历史学家肯定地说,塞乐斯应当算是第一位天文学家,他经常仰卧观察天上星座,探窥宇宙奥秘,他的女仆常戏称,塞乐斯想知道遥远的天空,却忽略了眼前的美色。数学史家Herodotus层考据得知Hals战后之时白天突然变成夜晚(其实是日蚀),而在此战之前塞乐斯曾对Delians预言此事。塞乐斯的墓碑上列有这样一段题辞:「这位天文学家之王的坟墓多少小了一点,但他在星辰领域中的光荣是颇为伟大的。

一、黄金分割的故事

由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。

公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。

公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。

中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。

到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。

二、黄金分割的历史

发现历史:

由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。

公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。

公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。

中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。

到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。

如何发现的传说:

公元前6世纪,古希腊数学家,哲学家毕达哥拉斯(PInthagoras)有一天路过一铁匠铺,被清脆悦耳的打铁声吸引住了,驻足细听,凭直觉认定这声音有“秘密”!他走进铺里,仔细测量了铁砧和铁锤的大小,发现它们之间的比例近乎于1:o.618.回家后,他拿来一根木棒,让他的学生在这根木棒上刻下一个记号,其位置既要使木棒的两端距离不相等,又要使人看上去觉得满意。经多次实验得到一个非常一致的结果,即用C点分割木棒AB,整段AB与长段cB之比,等于长段CB与短段CA之比.毕这哥拉斯接着又发现,把较短的一段放在较长的一段上面,也产生同样的比例:以致于无穷(见图5—5—1)

经过计算得出结沦:长段(假设为a)与短段(假设为b)之比为1:o.618,其比值为L 618.可用公式

a :b=(a+b):a

表达,并存在着的数学关系.此时,长段长度的平方又恰等于整个木棒与短段长度的乘积,即a=(a+b)b

这一神奇的比例关系,后来被古希腊著名哲学家、美学家柏拉图誉为“黄金分割律”,简称“黄金律”、“黄金比”.这里用“黄金”两字来形容这个规律的重要性,可谓是恰如其分.更奇妙的是,1除以1.618恰等于o.618,而其他数字均无此特征.例如:I除以1.718不等手o,718;1除以1.518不等于O,518……1与o.618之差的O.382,其与o.618之比也

等于o.618(精确到o.001)。因此,说黄金分割的比值是1.618(长段:短段)或是o.618(短段:长段),都是正确的.数学家们还发现2:3或3:5或5:8等都是黄金比的近似值,并以分子分母之和为新的分母(原分母为分子)而递增,即3/5.5/8.8/13,,13/21,21/34.34/55、55/88……数字越大,其分子分母的比值就越接近O.618,数学上将此称为“弗波纳齐数列”。根据这个数列规律,又可从“线段”黄金比求出“面积”黄金比.近代建筑学家勒.柯布西埃就是根据此数列发明了“黄金尺”(建筑标准尺,以I.6倍略强的比例递增)。中世纪数学家开普勒(Kepler)将黄金分割律和勾股定理并称为“几何学中的两大宝藏”。19世纪威尼斯数学家帕乔里将黄金分割律誉为“神赐的比例”.

三、黄金分割律的发现在历史上有哪些记载

黄金分割律很早就被人们发现了。

公元前6世纪古希腊数学家毕达哥拉斯对“如何在线段S上选一点C,使得这样一个问题进行过深人细致的研究,最终发现了世界上赫赫有名的黄金分割律。然而C点应设在何处呢?要解决这个问题,我们可以先设定线段的长度是1, C点到点的长度是X,则C点到S点的长度是(1-x),于是1 : x—x ' ( 1-X )75 1解得;c=± (y-y)去掉负值,得J5.12-2=0.618。

“0.618”就是唯一满足黄金分割律的点,叫做黄金分割点。

四、黄金分割的事例

黄金分割 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。

其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。

这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618 (1-0.618)/0.618=0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。 让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被称为"菲波那契数"。

特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。 菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。

即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。

但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。 一个很能说明问题的例子是五角星/正五边形。

五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。

由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。 黄金分割点约等于0.618:1 是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。

线段上有两个这样的点。 利用线段上的两黄金分割点,可作出正五角星,正五边形。

2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。

而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,。后二数之比2/3,3/5,4/8,8/13,13/21,。

近似值的。 黄金分割在文艺复兴前后,经过 *** 人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。

这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。 其实有关"黄金分割",我国也有记载。

虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。

欧洲的比例算法是源于我国而经过印度由 *** 传入欧洲的,而不是直接从古希腊传入的。 因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。

就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。

正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。 黄金分割〔Golden Section〕是一种数学上的比例关系。

黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取1.618 ,就像圆周率在应用时取3.14一样。

发现历史 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。

公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。

德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。

黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。

|。

。.a。

..| +-------------+--------+ - | | | . | | | . | B | A | b | | | . | | | . | | | . +-------------+--------+ - |。

b。

|..a-b。| 通常用希腊字母 表示这个值。

黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。

确切值为根号5+1/2 黄金分割数是无理数,前面的1024位为: 0.6180339887 4989484820 4586834365 6381177203 0917980576 2862135448 6227052604 6281890244 9707207204 1893911374 8475408807 5386891752 1266338622 。

五、历史上,与黄金分割有关的趣闻

黄金分割又称黄金律,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值为1∶0.618或1.618∶1,即长段为全段的0.618。0.618被公认为最具有审美意义的比例数字。上述比例是最能引起人的美感的比例,因此被称为黄金分割。

故事:关于黄金分割比例的起源大多认为来自毕达哥拉斯,据说在古希腊,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,这个声音的比例被毕达哥拉斯用数理的方式表达出来。被应用在很多领域,后来很多人专门研究过,开普勒称其为“神圣分割”也有人称其为“金法”。在金字塔建成1000年后才出现毕达哥拉斯定律,可见这很早就存在。只是不知这个谜底。

六、黄金分割的发现史

虽然不是自己写的,但是希望这个能对你有用!

黄金分割〔Golden Section〕是一种数学上的比例关系。黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取0.618 ,就像圆周率在应用时取3.14一样。

发现历史

由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。

公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。

公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。

中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。

到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。

|。。。.a。。。..|

+-------------+--------+ -

| | | .

| | | .

| B | A | b

| | | .

| | | .

| | | .

+-------------+--------+ -

|。。b。。|..a-b。|

通常用希腊字母 表示这个值。

黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。

确切值为(根号5-1)/2

实际上,所谓黄金分割,就是上面的那种分割满足b/(a-b)=a/b,即a^2-ab-b^2=0,可算出b/a=(根号5-1)/2

作已知线段的黄金分割点

2000多年前,古希腊的柏拉图派学者欧多克斯,首先使用尺规作图作出已知线段的黄金分割点,他的作法如下:

1.设已知线段为AB,过点B作BC⊥AB,且BC=AB/2;

2.连AC;

3.以C为圆心,CB为半径作弧,交AC于D;

4.以A为圆心,AD为半径作弧,交AB于P,则点P就是AB的黄金分割点。

证明:设由勾股定理可知,AC=根号(AB^2+AC^2)=根号5/2*AB

AD=AC-DC=根号5/2*AB-AB/2=(根号5-1)/2*AB

AP=AD=(根号5-1)/2*AB

AP:AB=(根号5-1)/2

点P就是AB的黄金分割点。

七、关于黄金分割的有趣的故事

有些植茎上,两张相邻叶柄的夹角是137°28',这恰好是把圆周分成1:0.618的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。植物叶子,千姿百态,生机盎然,给大自然带来了美丽的绿色世界。尽管叶子形态随种而异,但它在茎上的排列顺序(称为叶序),却是极有规律的。有些植物的花瓣及主干上枝条的生长,也是符合这个规律的。你从植物茎的顶端向下看,经细心观察,发现上下层中相邻的两片叶子之间约成137.5°角。如果每层叶子只画一片来代表,第一层和第二层的相邻两叶之间的角度差约是137.5°,以后二到三层,三到四层,四到五层……两叶之间都成这个角度。植物学家经过计算表明:这个角度对叶子的采光、通风都是最佳的。叶子的排布,多么精巧!叶子间的137.5°角中,藏有什么“密码”呢?我们知道,一周是360°,360°-137.5°=222.5°,而137.5∶222.5≈0.618。瞧,这就是“密码”!叶子的精巧而神奇的排布中,竟然隐藏着0.618的比例。

医学与0.618有着千丝万缕的联系,它可解释人为什么在环境22至24℃时感觉最舒适。因为人的体温为37℃与0.618的乘积为22.8℃,而且这一温度中肌体的新陈代谢、生理节奏和生理功能均处于最佳状态。科学家们还发现,当外界环境温度为人体温度的0.618倍时,人会感到最舒服.现代医学研究还表明,0.618与养生之道息息相关,动与静是一个0.618的比例关系,大致四分动六分静,才是最佳的养生之道。医学分析还发现,饭吃六七成饱的几乎不生胃病。

人的体温37度,室温23度是人们感受最舒适的温度,而23÷37≈0.622很接近0.618。

理想体重计算很接近身高*(1-0.618)。

这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137°28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。

建筑师们对数学0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618…有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618…处。艺术家们认为弦乐器的琴马放在琴弦的0.618…处,能使琴声更加柔和甜美。

数字0.618…更为数学家所关注,它的出现,不仅解决了许多数学难题(如:十等分、五等分圆周;求18度、36度角的正弦、余弦值等),而且还使优选法成为可能。

八、黄金分割的事例

黄金分割 把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。

其比值是一个无理数,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。

这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618 (1-0.618)/0.618=0.618 这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。 让我们首先从一个数列开始,它的前面几个数是:1、1、2、3、5、8、13、21、34、55、89、144…..这个数列的名字叫做"菲波那契数列",这些数被称为"菲波那契数"。

特点是即除前两个数(数值为1)之外,每个数都是它前面两个数之和。 菲波那契数列与黄金分割有什么关系呢?经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。

即f(n)/f(n-1)-→0.618…。由于菲波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。

但是当我们继续计算出后面更大的菲波那契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。 一个很能说明问题的例子是五角星/正五边形。

五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。

由于五角星的顶角是36度,这样也可以得出黄金分割的数值为2Sin18 。 黄金分割点约等于0.618:1 是指分一线段为两部分,使得原来线段的长跟较长的那部分的比为黄金分割的点。

线段上有两个这样的点。 利用线段上的两黄金分割点,可作出正五角星,正五边形。

2000多年前,古希腊雅典学派的第三大算学家欧道克萨斯首先提出黄金分割。所谓黄金分割,指的是把长为L的线段分为两部分,使其中一部分对于全部之比,等于另一部分对于该部分之比。

而计算黄金分割最简单的方法,是计算斐波契数列1,1,2,3,5,8,13,21,。后二数之比2/3,3/5,4/8,8/13,13/21,。

近似值的。 黄金分割在文艺复兴前后,经过 *** 人传入欧洲,受到了欧洲人的欢迎,他们称之为"金法",17世纪欧洲的一位数学家,甚至称它为"各种算法中最可宝贵的算法"。

这种算法在印度称之为"三率法"或"三数法则",也就是我们现在常说的比例方法。 其实有关"黄金分割",我国也有记载。

虽然没有古希腊的早,但它是我国古代数学家独立创造的,后来传入了印度。经考证。

欧洲的比例算法是源于我国而经过印度由 *** 传入欧洲的,而不是直接从古希腊传入的。 因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。

就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。

正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。 黄金分割〔Golden Section〕是一种数学上的比例关系。

黄金分割具有严格的比例性、艺术性、和谐性,蕴藏着丰富的美学价值。应用时一般取1.618 ,就像圆周率在应用时取3.14一样。

发现历史 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。

公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。

德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。

黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。

|。

。.a。

..| +-------------+--------+ - | | | . | | | . | B | A | b | | | . | | | . | | | . +-------------+--------+ - |。

b。

|..a-b。| 通常用希腊字母 表示这个值。

黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。

确切值为根号5+1/2 黄金分割数是无理数,前面的1024位为: 0.6180339887 4989484820 4586834365 6381177203 0917980576 2862135448 6227052604 6281890244 9707207204 1893911374 8475408807 5386891752 1266338622 23。

九、关于黄金分割的事例

一个很能说明问题的例子是五角星/正五边形。五角星是非常美丽的,我们的国旗上就有五颗,还有不少国家的国旗也用五角星,这是为什么?因为在五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形。

因为它在造型艺术中具有美学价值,在工艺美术和日用品的长宽设计中,采用这一比值能够引起人们的美感,在实际生活中的应用也非常广泛,建筑物中某些线段的比就科学采用了黄金分割,舞台上的报幕员并不是站在舞台的正中央,而是偏在台上一侧,以站在舞台长度的黄金分割点的位置最美观,声音传播的最好。就连植物界也有采用黄金分割的地方,如果从一棵嫩枝的顶端向下看,就会看到叶子是按照黄金分割的规律排列着的。在很多科学实验中,选取方案常用一种0.618法,即优选法,它可以使我们合理地安排较少的试验次数找到合理的西方和合适的工艺条件。正因为它在建筑、文艺、工农业生产和科学实验中有着广泛而重要的应用,所以人们才珍贵地称它为"黄金分割"。

本文来自作者[admin]投稿,不代表迪紫号立场,如若转载,请注明出处:https://kpedzd.cn/dizi/42.html

(4)

文章推荐

  • 护士专业个人简历

     日子在弹指一挥间就毫无声息的流逝,新一轮的招聘又在朝我们招手,该为自己写一份简历了哦。你知道写简历需要注意哪些问题吗?以下是我帮大家整理的护士专业个人简历模板,欢迎大家借鉴与参考,希望对大家有所帮助。 护士专业个人简历1 个人信息 姓名: 性别:女 民族:汉族 出生日期: 学历:

    2026年02月05日
    3306
  • 历史选择题总是错很多怎样提高选择的准确性

    那么怎样提高选择的准确性呢?一、明确选择题的基本构成任何一道历史选择题都包括三个要素,即题干、题肢和正确答案。题干就是题目的主干部分、设问部分,它限定了答题内容、确定了答题思路和隐含了答题信息,正确答案必须以此为依据。题肢就是选择题的备选项,一般以A、B、C、D体现,四个选项中一般

    2026年02月05日
    5307
  • 国际一二线男士品牌服装有那些?

    世界顶级男装名牌:ARMANI(意大利)――意大利绅士1973年Armani建立了自己的品牌。这个意大利品牌的风格很少与时髦有关。事实上,在每个季节,它们都有一些适当的可理解的修改。因为设计师阿玛尼相信,服装的质量更甚于款式更新。阿玛尼的男装没有拘谨、做作之感,融入了美国校园里便

    2026年02月05日
    3309
  • 莆田系四大家族(揭开医疗行业黑幕)

    近年来,莆田系四大家族成为了医疗行业的一大热词。这四大家族分别为陈氏家族、郑氏家族、林氏家族和黄氏家族。他们掌控了莆田医疗行业的大部分市场份额,涉及医院、药店、医疗器械等多个领域。然而,这些家族的财富和势力背后却隐藏着许多黑暗的秘密。家族背景四大家族都是莆田当地的土著,他们的祖辈都是医生或药店老板。

    2026年02月05日
    3312
  • 团队精神体现在哪些方面

    团队精神体现的是互相沟通、交流,真诚合作,为实现整体目标而奋斗的精神。它包含两层含义:一是与别人沟通、交流的能力;二是与人合作的能力。一个是团队的生存与发展,必须让每位员工都彻底的贯彻执行团队精神,这样,公司才能在激烈的竞争中稳步发展。大家都看到过大雁南飞。大雁结队迁徙时往往排成"人"字

    2026年02月05日
    1313
  • 史迪仔的主人是谁?

    史迪仔,即史迪奇,其主人为莉萝、柔奈、安玲。一、梨落莉萝是个可爱的夏威夷小女孩。当她向流星许愿希望能有个朋友的时候,她却没有想到这颗“流星”真的是从外太空掉下来的,它里面装着一个问题试验品。而不久,莉萝就收养了这个“626号试验品”,她认为这是一只狗,并为他取名“史迪奇”(Stitch)。莉萝努力教

    2026年02月05日
    2316
  • 沈阳投诉出租车啲电话是多少

    市出租办25873482打上面这个就行。万泉出租汽车公司东陵区万柳塘55号2423111524231003华榕出租汽车有限公司于洪区银山路1-10号三门86690510鹏发出租汽车有限公司86403960安运出租汽车公司东大车队铁西区建设东路33号25873357春城出租汽车

    2026年02月05日
    1317
  • 水产养殖主要考研方向

    水产养殖学专业考研方向主要集中在:水产养殖、渔业、水生生物学、动物营养与饲料科学,以下是各专业介绍:水产养殖学专业考研方向1:水产养殖水产养殖是水产学科的二级学科之一。它是研究水产养殖对象的生物学特性、生存规律及其与环境的内在联系,养殖理论与技术的一门学科。水产养殖专业要求学生掌握马克思主义基本理论

    2026年02月05日
    1321
  • 严格素食主义是否会造成健康上的问题?

    其实严格的素食主义不一定会对健康造成问题,那些因为吃素而造成营养不良的人,一般情况下都是营养不均衡造成的,而吃素与不吃素最大的区别在于吃素的人无法获取肉类当中的大量的蛋白质,想要摄取这种蛋白质的话,除了肉类当中其他几种食物也是含有的,比如说鸡蛋和牛奶当中就含有很多蛋白质,但是对于严格的素食主义者,可

    2026年02月05日
    1321
  • 制作时钟的手工

    ?时钟手工制作方法如下:1、找一块没用的硬纸板或者废纸箱,用圆规,吃饭用的盘子,光盘等卡在纸板上画一个圆,剪下来。2、用锥子在圆盘的正中央加一个小孔,拿刻度尺平均分配好12个点,对照家里的钟表描画好,再把周围用自己喜欢的颜色涂上颜色,表盘就制作完成。3、把三根针的针头都扎个洞,使其能穿过螺丝钉。把三

    2026年02月06日
    2301
  • 纪录片深蓝的英文ppt演讲稿怎么写

    要明确主题和目的。根据主题和目的,制定演讲的结构,列出需要提及的关键点。应该引起听众的兴趣,吸引他们的注意力。可以用一个引人入胜的故事、一个有趣的事实或者一个引人注目的问题开始演讲。专文介绍——这些镜头(《动物世界》)怎么拍出来的?《帝企鹅日记》中,7000多只帝企鹅围成方阵,抵御漫天而来的暴风雪

    2026年02月06日
    2303
  • 儿童手工中国结怎么做?

    第一步:先捏住绳子中间位置,然后排成十字形。见下图:第二步:把中间的那个环弯下压住右边的环上。见下图:第三步:把右边的环往左边翻压,同时压住中环和中线,并在左端露出环端。见下图:第四步:把中绳抄的下端往上折翻,压在右环的上面。见下图:第五步:将左环往右翻下,压在上一步上翻中绳的上面。见下图:第六步:

    2026年02月06日
    2303

发表回复

本站作者才能评论

评论列表(3条)

  • admin的头像
    admin 2026年02月05日

    我是迪紫号的签约作者“admin”

  • admin
    admin 2026年02月05日

    本文概览:欧几里德(eucild)生于雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。 古希腊的数学研究有...

  • admin
    用户020509 2026年02月05日

    文章不错《数学历史故事?》内容很有帮助